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Abstract. It iswell known that the matrix H of cinematic transformations one arrives at in
the conventional boundary element method is singular, for a finite domain, as a conse-
guence of the fact that rigid body displacements do not produce deformations in an elastic
body. A little more than a decade ago, the author introduced the “ hybrid boundary element
method” , in which a symmetric, positive semi-definite flexibility matrix F is obtained on the
basis of a sound variational principle. Along with this novel formulation, concepts of gen-
eralized inverse matrices had to be considered for the adequate understanding and ma-
nipulation of the matrix singularities involved. Motivated by the author’s first accomplish-
ments, De Figueiredo derived a few years later the * hybrid displacement boundary element
method” , a variational counterpart that gives rise to the same matrix F, but this time in
relation to the matrix G of the conventional boundary element method. Quite recently, the
author decided to investigate the spectral properties of this flexibility-like matrix G, in or-
der do demonstrate that, adequately obtained, thisis also a singular matrix (as only related
to forces in balance). Such a singularity is a welcome feature one could and should take
advantage of. The present paper is an attempt of assessing the spectral properties of the
matrices H, G and F, according to the roles they play in the different boundary element
formulations. It is demonstrated that such properties are interrelated in the formulations
outlined. A not unremarkable consequence of this compared study is the conclusion that
both the conventional and the hybrid displacement boundary element methods need some
conceptual improvementsin their formulations, in order to become completely consistent.
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1. SOME BASIC CONSIDERATIONS ON THE FUNDAMENTAL SOLUTIONS

The developments carried out in items 1 and 2 are taken from Dumont (1998). Consider
the fundamental solution of a generic three-dimensional elasticity problem, expressed in

terms of displacements u’ measured at a given point for a given coordinate direction “i” of
the domain, caused by some arhitrary, singular force p;, acting according to a given degree
of freedom “m” (the index “m” characterizes both a point and a direction in the domain):

l"IiD = u?m ﬁm + l"Iirsr.s = (Him +u'r C )E)m (1)
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This fundamental solution is usually given in the literature by the function u, aone, im-

plicitly related to unitary forces p, . The complete representation of eq. (1) is both mathe-
matically and physically more adequate, since it is stated for an arbitrary (not unitary) singu-
lar force p;, (in which “"™” means “fundamental solution”) and a term is added to take into
account the arbitrary rigid body displacements, as characterized by the superscript “r”. In the
rigid body displacement functions u;, “s’ refers to the rigid body displacement being inter-

polated. The quantities r, are arbitrary constants, which may be correlated to the singular

forces p, through some arbitrary matrix C, of constants. In this paper, subscripts “m” and

“n” refer to degrees of freedom of discretized quantities; subscripts “s” and “t” refer to rigid
body displacements; and subscripts “i” and “j” are related to the coordinate directions.
The stresses at a given point of the domain are obtained from eqg. (1) as

0y = 0y Py Suchthat o, =0, p, =0in Q (2

as a property of a fundamental solution. Moreover, in a vicinity Q, of the point of applica-
O
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tion of the singular force p,, J’Q o, dQ is equa to either 1 or zero, depending on

whether the subscripts “i” and “m” refer to the same degree of freedom or not. From the
stresses in eg. (2) one derives the traction forces along the boundary I' as

tiD = pimmﬁm (3)
2. THE TRADITIONAL BOUNDARY ELEMENT EQUATION

The matrix equations of the traditional boundary element method may be stated, starting
from minimum residual considerations and making use of egs. (1) and (3), as

pﬁ(r pi?nuindr - Qaiij’j uindQ}jn =
= pr?]('l’rui?ntindr)n + pr?] J’rCsmuirstindr n + pr?] (J’Q ui?nbl dQ)+ pr?] (J’Q Csmuirsbl dQ)
inwhich u,, and t,, are interpolation functions for displacements u, , in terms of some nodal
parameters d,, and traction forces t;, in terms of some nodal parameters t,, respectively

(usually u,, = t;,). Body forces are taken into account by the vector b .
Considering that p, isarbitrary, eq. (4) leads to the known matrix equation

(4)

Hd =Gt +b )
In equation above,
H = Hmn = Ir pi?nuindr _IQ Oﬁm’j uindQ (6)

is given by the expression in the first brackets in eq. (4), supposing that the singularities of
the boundary integral have been properly dealt with, also observing eq. (2). The matrix

G=G, = Uil (7

is given by the boundary integral in the second brackets of eg. (4), an improper integral that
may also present some quasi-singularities (Dumont, 1994).

Theterms d=d, and t =t in eg. (5) are vectors corresponding to boundary displace-
ment and traction parameters, respectively.



Finaly, one hasin eg. (5) the vector b of nodal displacements equivalent to body forces:
b=b, =, u b dQ 8

Equation (4) can only lead to eq. (5) if the terms related to the rigid body displacements
u’, vanish, for arbitrary p;, and C_,, that is, if

Ir l"Iirstindr tn +IQ uirsbldQ = O (9)
This equation means that the assumed traction forces along the boundary should be in
equilibrium with the body forces as a premise. It seems that this fact has not been adequately
dealt with in the literature.
2.1 Constructing a Spectrally Admissible Matrix G

Equation (12) may be represented in matrix notation as

R't+b" =0 (10)
in which
R=R, :J’r uit,dr and b’ =h, :J’Q U.bdQ (11)

are arectangular matrix with as many columns as the number of rigid body displacements u;,
and a vector of equivalent nodal displacements obtained in terms of the (mixed) virtual work
done by the body forces on u, respectively.

Consider a rectangular matrix Z, the columns of which are an orthogonal basis of the col-
umns of R, that is, such that Z'Z =1 and (Z ZT)(Z ZT) =ZZ". The idempotent matrix

Z Z" isthe orthogonal projector on the space of the inadmissible, unbalanced traction force
parameters t (Ben-lsrael and Greville, 1980). For elasticity problems, the rigid body dis-
placement functions u, may be defined in infinite ways. However, the resulting idempotent

matrix ZZ" isunique. Then, it follows from the definition of Z that

R=2ZA\ (12
inwhich A isanon-singular square matrix readily obtained as
A=Z'R (13)

If the traction force parameters t satisfy eq. (10), a condition for eg. (5) to be valid, it
follows from egs. (12) and (13) that

Z't+A7b" =0 (14)

Pre-multiplying equation above by Z and subtracting t from both sides yields the condi-
tion that t must satisfy to ensure the validity of eq. (5):

t=(1-ZZ2")t-ZA7Db' (15)
If this relationship is valid, then eq. (5) should be re-written as
Hd=G(-ZZ")t+(b-GZXA 'b") or Hd=G,t +b, (16)

in which G, =G(l1 -ZZ") is the admissible part of the matrix G, obtained through the



orthogonal projection given by (I -Z ZT) ,and b, =(b-GZA"b") isavector of admis-
sible nodal displacements related to the body forces. The admissible matrix G, , as defined
ineg. (16), issingular. It is worth establishing that

Rank(G,) =rank(l -z Z") (17)

afeature that can only be inferred physicaly. In fact, the matrix G is a flexibility-type trans-
formation matrix, which must always yield some non-trivial equivalent nodal displacement
vector to any set of traction force parameterst, if one is dealing with an elastic body. Then,
owing to this physical property, G should be non-singular. However, depending on the set of

rigid body displacement functions u;, that appears in the definition of the fundamental solu-
tion, as given in eq. (1), G may become singular or ill conditioned. Regardless the condi-
tioning of matrix G, the rank of matrix G, is aways well defined according to eq. (17),
since G, is by construction independent of the rigid body displacement functions u;. The

conventional boundary element formulation relies on the fact that the matrix G is non-
singular and hopefully not ill conditioned. All considerations of the present paper are based
on the effectively reliable premise expressed by eg. (17).

One might attempt to solve eg. (16) for the admissible traction parameters t :

t=G{Y(Hd-b,) (18)

An apparent difficulty in obtaining eq. (18) lies in the fact that G, is singular. Fortu-

nately, equation system (16) corresponds mathematically to a problem proposed and solved
by Bott and Duffin in1953 (apud Ben-Israel and Greville, 1980). According to that, one
proposes following restricted inverse for G, :

GV =(1-227)G, +ZyZ")* (19)

which is more adequate than the Bott-Duffin inverse, since it contains a symmetric, positive
definite, but otherwise arbitrary, matrix y , which may be chosen in order to ensure that the
elementsof ZyZ" and G, have approximately the same magnitude, thus avoiding round-

off errors during the numerical computations. In elastostatics, for instance, the elements of
the matrix G are inversely proportional to the shear modulus, which does not affect the or-

thogonal basis Z. Since G, and ZyZ' are complementary matrices (G,ZAZ" =0),
G,+ZyZ" isawayswell conditioned (see eq. (17) and subsequent considerations).
Alternatively, one could think in obtaining the matrix C=C,,, in eq. (4), in such a way

that, in absence of body forces, the nodal displacements equivalent to any set of inadmissible
traction force parameters, spanned by the basis Z, be equal to zero:

(6+cRT)z =0 (20)
Making use of eqg. (12), one obtains the expression of the constants C:
C=-GZAT (21)

Substitution of C into eq. (4), according to its expression above, yields the same eqg. (16).
2.2 A Spectrally Consistent Stiffness-Type Matrix

One may define a vector p of nodal forces that are equivalent in terms of virtual work to



the traction force parameterst on the boundary
p=Lt, inwhich L=L_, :J’r Ut dl (22)

Then, it follows from egs. (18) and (22) that
p=K.d-LG{"b,, inwhich K. =LG{"H (23)

is a stiffness-type matrix obtained in the frame of the conventional boundary element
method. There is no reason to believe that this matrix should be symmetric, or at least less

non-symmetric, in general, than the stiffness-type matrix LG ™H . The criticisms expressed
by Dumont (1987) are still valid in case of an admissible matrix G, . However, the matrix

K., asgivenin eq.(23), has improved spectral properties that ensure the equilibrium of the
equivalent nodal forces p. This shall be demonstrated in the following.
Let the columns of a rectangular matrix W =W, be a basis of the nodal displacements d

related to rigid body displacements. For the moment, one can only say that W and Z have
the same dimension. For afinite domain, it follows from eg. (5) that, necessarily,

HW =0 (24)
which is a feature related to the physical nature of the fundamenta solution. On the other
hand, the rigid body displacement functions u, may be described along the boundary I' asa
linear combination of the displacement interpolation functions u,, and W,:

uirs = uimeta)ts (25)

in which @ =, is a non-singular square matrix that transforms W, into the nodal dis-
placements related to u,. Then, it follows from egs. (11), (22) and (25) that

R=L"Ww (26)
and, according to eqg. (12),
L"W=Z o™ (27)
that is, the columns of L™W lie in the space spanned by the rows of Z . Then
WTL(-Z2Z")=wAT27(1-2Z27) =0 (28)
Then, given the definitions of G{™ ineq. (19) and K .. in eq. (23), one obtains from the
orthogonality conditions expressed in egs. (24) and (28) that W'K . =K ;W' =0. As a

consequence, the equivalent nodal forces p of eg. (23) are always self-equilibrated. Moreo-
ver, it may be demonstrated that rank(K ) = rank(l - WWT).

3. THEHYBRID DISPLACEMENT BOUNDARY ELEMENT METHOD

The hybrid displacement boundary element method was introduced by De Figueiredo
(1991), as an dternative to the hybrid stress boundary element method (Dumont, 1987a).

When the rigid body displacements of the fundamental solution are properly considered,
the variational principle that underlies the hybrid displacement boundary element method
becomes, in matrix notation,



3" |-Fp +b+CR™t+b" )+ Gt]+ad" [o- L]+

(29)
+6t"[6"p"-L"d +RCp]=0
in which all quantities have already been defined, with exception of the flexibility matrix
F=Fn =] PinUindr = f Tijmr; UndQ (30)

A vector p” of singular force parameters is introduced in eg. (29). Note that the rigid
body displacements that affect the displacements u,., according to eg. (1), have no influence
in the expression of F, since the forces of a fundamental solution are self-equilibrated by
definition and perform zero work on rigid body displacements. This matrix is by definition
symmetric. Its integral expression involves the same kind of singularities of the integrals re-
quired in the evaluation of the matrices H and G, except for the elements about the main
diagonal, when indices m and n refer to the same nodal point (Dumont, 1987a). These ele-
ments can only be evaluated in the frame of a spectral property to be obtained presently.

For arbitrary variations dp" and &d, the set of equations originated from the variational
principle may be expressed as

Fp”=G,t+b, (31)
p=Lt (32)
L'd =Gp” (33)

in which G, =G+CR" =G(1-ZZ") and b, =b+Cb' =b-GZA™b" are defined ac-
cording to egs. (16) and (21).

Making use of the knowledge gained in the first part of this paper, one solves the first
equation of the set above:

t =GUYFp”"-G{Pb, (34)

inwhich G{™ is given by eq. (19). Equation (34) means that

Z't=0 (35)
and as a consequence, eqg. (32) may be written as

p=L(-zz") (36)
from which follows that

WTp=WTL(-2Z"k=0 (37)

according to eg. (28). This demonstrates the spectral consistency of egs. (32) and (34).
The admissible matrix G is by construction orthogonal to Z, according to eg. (16). As

a consequence, there also exists an orthonormal basis Y such that

GIY =0 (38)
Then, the admissible set of singular forces p”, which may be transformed into displacements
in eg. (33), must necessarily be orthogonal to Y:

Y"p"=0 (39)
As a consequence, it the matrix F in egs. (31) and (34) is singular, as proposed by Dumont



(1987a) and followed by De Figueiredo (1991), it also must be orthogonal to Y':
FY =0 (40)

This is the criterion needed for the determination of the elements about the main diagonal of
the matrix F. An exhaustive investigation of the properties of matrices F and G, deserves a

more extensive paper. One summarizes that, since egs. (27) and (28) hold, p” in eq. (33)
may be expressed as
1 \T

pD:(LGgl)) d (41)

Substituting for p” in eg. (31) and considering egs. (32) and (40), one arrives at a stiffness
relation between nodal displacements and equivalent nodal forces

Kod+(LGS®b, =p, inwhich K, =L L) (42)

is a stiffness matrix. According to eg. (28), K, is by construction orthogonal to rigid body

displacements, independently from the properties of the matrix F.

De Figueiredo introduced the hybrid displacement boundary element method with no
consideration of the rigid body displacements that are inherent to a fundamental solution.
Then, she had C = 0 in eg. (29) and the matrix G in place of G, in egs. (31) and (33).
Moreover, it was assumed that, instead of eq. (40),

FY =0 (43)

where Y isthe solution of €g. (33) for inadmissible displacements (with G in place of G, ):

GTY=LTwW (44)
thus arriving, after evaluation of the diagonal elements of F, according to eq. (43), at

Kod+(LGp=p with k, =(c2FLc™) (45)
To assess the coherence of this formulation, consider eq. (38) written as

(-zz")s"y =0 (46)

Then, it follows that
G'Y=22"G"Y=zZ (47)

in which Z is a non-orthonormal basis of the same space spanned by Z. Now, observing
egs. (44) and (47), and considering eg. (27), one concludes that Y in egs. (43) and (44) isa
non-orthonormal basis of the space spanned by Y. As a consequence, egs. (40) and (43) are
equivalent. Moreover, matrix K, as indicated in both egs. (42) and (45), is one and the
same matrix, provided that G may be inverted (is not ill conditioned).

The brief outline of this section is an important theoretical contribution to the hybrid
displacement boundary element method, since it assesses ant attests the spectral consistency
of the stiffness matrix K ,, obtained by De Figueiredo (1991). However, the vector of nodal
forces equivalent to body forces should be expressed asin eg. (42), not asin eq. (45), for the
complete consistency of the formulation.



4. AN OUTLINE OF THE HYBRID STRESS BOUNDARY ELEMENT METHOD

The hybrid stress boundary element method is based on the Hellinger-Reissner potential.
It was first applied by Pian to finite elements. In 1987, Dumont generalized Pian’s ideas for
considering the stress field in the domain as a series of fundamental, singular solutions, thus
arriving at a boundary integral formulation. In matrix notation, the variational principle
writes

~an, =3 [Fp”+b° —Hd]+ad[p-t* ~H™p] =0 (48)

The flexibility matrix F and the cinematic transformation matrix H have aready been
defined, although in a different context, in egs. (30) and (6), respectively. The vector p isin
part a set of nodal forces equivalent to known surface forces t, along part I', of the bound-

ary:
P=Pn :J’r Uit dl (49)

and in part a set of unknowns corresponding to reaction forces along the complementary
boundary segment I',. The vectors b”and t° are nodal displacements and nodal forces,

respectively, equivalent to applied body forces:
b® =l = [ pUindl = [ Oy UndQ,  t° =t = [ 0 updl (50)

in which ai‘j’ is an arbitrary stress field in equilibrium with the applied body forces, such that

i?,j+h =0 in Q, and u’, are the corresponding displacements. Note that neither eq. (30)

nor eg. (50) is affected by the rigid body displacements inherent to u; and u?., respectively,
since the stresses defined in a fundamental solution are by construction self equilibrated.

For arbitrary variations dp" and &d , two sets of equations originate from eqg. (48):

o

Fp”=Hd-b
g (51)
HTpD:p_tb

For afinite domain, the matrix H is singular by construction, as formalized in eq. (24).
As a consequence, there is an orthogonal basis V such that

HTV =0 (52)
Moreover, it may be verified that, in the second of egs. (51),

WT(p-t*)=0 (53)
Then, one must have, for physical consistency,

Vp“=0 (54)

from which follows, in the first of egs. (51), that necessarily
FV =0 (55)

This equation is the key for the evaluation of the elements about the main diagonal of the
matrix F, which cannot be directly obtained by integration.

Considering the spectral properties given by egs. (54) and (55), one may solve the first
of egs. (51) for p”, in terms of generalized inverses (Ben-Isragl and Greville, 1980) and in-



troduce its expression into the second of egs. (51), thus arriving at the relation
HTFE+VV ) '"Hd =p-t° +HT(F+VVT )b’ (56)

in which H' (F +VV' )_1H =K is a symmetric, positive semi-definite stiffness matrix.
Owing to the spectral property of H given by eq. (24), this stiffness matrix is by construction
orthogonal to rigid body displacements.

For the sake of brevity, one has to content oneself with this short description of the hy-
brid stress boundary element method. Interested readers are referred to some of the articles
written by the author in the last decade.

5. A COMPARATIVE SPECTRAL ANALYSISOF THE METHODS OUTLINED

The three methods presented are schematized in Figs. 1, 2 and 3. One readily identifies
all types of transformations performed between the different coordinate systems, taking into
account the bases V, Y, W and Z of inadmissible parameters. All transformations are physi-
caly interpreted. Moreover, al primary nodal parameters are identified in brackets, accord-
ing to which one can represent the final results both in the domain and along the boundary.

For the sake of brevity, numerical results could not be considered in this article. All
three formulations perform equivalently, in terms of both accuracy and spectral properties,
provided that one considers the admissible matrix G, of eq. (16) and proceeds as outlined.

Use of the inconsistent matrix G may lead to hazardous results, in case of ill conditioning.

All considerations in this paper were made for a finite, smply connected domain. For
either a multiply connected or an infinite domain, some new considerations have to be
added, in general, athough the basic spectral properties remain valid.

The author hopes to have accomplished his task: demonstrate that in all boundary ele-
ment formulations one has to deal with singular matrices and generalized inverses. A not
unremarkable conclusion is that both the conventional and the hybrid displacement boundary
element methods need some conceptua improvements in their formulations, in order to be-
come completely consistent.
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Equilibrium:

donr p=Lt
(displacements)
Resulting
equilibrium statement: tonl
LG{"Hd=p+LG{"b, (tractions)
Compatibility:

Hd=G,t+b,

mental solution [

________________________________________

donr
(displacements)

Resulting
equilibrium statement:

(tractions)

Compatibil-

Compatibility:
ity:L"d =GTp" ompatibitty

Fp"=G t+b,
Figure 2. Transformations carried out in the hybrid displacement boundary eement method.

Equilibrium:
donr H'p"=p-t°
(displacements)
Resulting
equilibrium statement:
F9Hd =p-t" +H'F™b°
Compatibility:

Fp"=Hd-b"

Figure 3. Transformations carried out in the hybrid stress boundary element method.



