
AN ASSESSMENT OF THE SPECTRAL PROPERTIES OF THE MATRICES
OBTAINED IN THE BOUNDARY ELEMENT METHODS

Ney Augusto Dumont
Civil Engineering Department
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
22453-900 Rio de Janeiro, Brazil  -  dumont@civ.puc-rio.br

Abstract. It is well known that the matrix H of cinematic transformations one arrives at in
the conventional boundary element method is singular, for a finite domain, as a conse-
quence of the fact that rigid body displacements do not produce deformations in an elastic
body. A little more than a decade ago, the author introduced the “hybrid boundary element
method”, in which a symmetric, positive semi-definite flexibility matrix F is obtained on the
basis of a sound variational principle. Along with this novel formulation, concepts of gen-
eralized inverse matrices had to be considered for the adequate understanding and ma-
nipulation of the matrix singularities involved. Motivated by the author’s first accomplish-
ments, De Figueiredo derived a few years later the “hybrid displacement boundary element
method”, a variational counterpart that gives rise to the same matrix F, but this time in
relation to the matrix G of the conventional boundary element method. Quite recently, the
author decided to investigate the spectral properties of this flexibility-like matrix G, in or-
der do demonstrate that, adequately obtained, this is also a singular matrix (as only related
to forces in balance). Such a singularity is a welcome feature one could and should take
advantage of. The present paper is an attempt of assessing the spectral properties of the
matrices H, G and F, according to the roles they play in the different boundary element
formulations. It is demonstrated that such properties are interrelated in the formulations
outlined. A not unremarkable consequence of this compared study is the conclusion that
both the conventional and the hybrid displacement boundary element methods need some
conceptual improvements in their formulations, in order to become completely consistent.

Key words: Boundary element methods, variational methods, generalized inverse matrices.

1. SOME BASIC CONSIDERATIONS ON THE FUNDAMENTAL SOLUTIONS

The developments carried out in items 1 and 2 are taken from Dumont (1998). Consider
the fundamental solution of a generic three-dimensional elasticity problem, expressed in
terms of displacements ui

∗  measured at a given point for a given coordinate direction “i” of

the domain, caused by some arbitrary, singular force pm
∗  acting according to a given degree

of freedom “m” (the index “m” characterizes both a point and a direction in the domain):
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This fundamental solution is usually given in the literature by the function ∗
imu  alone, im-

plicitly related to unitary forces pm
∗ . The complete representation of eq. (1) is both mathe-

matically and physically more adequate, since it is stated for an arbitrary (not unitary) singu-
lar force pm

∗  (in which “ ∗ ” means “fundamental solution”) and a term is added to take into
account the arbitrary rigid body displacements, as characterized by the superscript “r”. In the
rigid body displacement functions uis

r , “s” refers to the rigid body displacement being inter-
polated. The quantities rs  are arbitrary constants, which may be correlated to the singular

forces pm
∗  through some arbitrary matrix Csm  of constants. In this paper, subscripts “m” and

“n” refer to degrees of freedom of discretized quantities; subscripts “s” and “t” refer to rigid
body displacements; and subscripts “i” and “j” are related to the coordinate directions.

The stresses at a given point of the domain are obtained from eq. (1) as

σ σij ijm mp∗ ∗ ∗=   such that  σ σij j ijm j mp∗ ∗ ∗= =, , 0  in Ω (2)

as a property of a fundamental solution. Moreover, in a vicinity Ω0  of the point of applica-

tion of the singular force pm
∗ , ∫ ∗

0

,
Ω

Ωdjijmσ  is equal to either 1 or zero, depending on

whether the subscripts “i” and “m” refer to the same degree of freedom or not. From the
stresses in eq. (2) one derives the traction forces along the boundary Γ  as

t p pi im m
∗ ∗ ∗= (3)

2. THE TRADITIONAL BOUNDARY ELEMENT EQUATION

The matrix equations of the traditional boundary element method may be stated, starting
from minimum residual considerations and making use of eqs. (1) and (3), as
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in which uin  and tin  are interpolation functions for displacements ui , in terms of some nodal
parameters d n , and traction forces ti , in terms of some nodal parameters tn , respectively
(usually uin  ≡  tin ). Body forces are taken into account by the vector bi .

Considering that pm
∗  is arbitrary, eq. (4) leads to the known matrix equation

Hd Gt b= + (5)

In equation above,

H ≡ =Hmn p u d u dim in ijm j in
∗ ∗∫ ∫−Γ Ω

Γ Ω
σ , (6)

is given by the expression in the first brackets in eq. (4), supposing that the singularities of
the boundary integral have been properly dealt with, also observing eq. (2). The matrix

G ≡ =Gmn u t dim in
∗∫ Γ

Γ
(7)

is given by the boundary integral in the second brackets of eq. (4), an improper integral that
may also present some quasi-singularities (Dumont, 1994).

The terms d ≡ dn  and t ≡ tn  in eq. (5) are vectors corresponding to boundary displace-
ment and traction parameters, respectively.



Finally, one has in eq. (5) the vector b of nodal displacements equivalent to body forces:

b ≡ = ∗∫b u b dm im i Ω
Ω

(8)

Equation (4) can only lead to eq. (5) if the terms related to the rigid body displacements
uis

r  vanish, for arbitrary pm
∗  and Csm , that is, if

u t d t u b dis
r

in n is
r

iΓ Ω
Γ Ω∫ ∫+ ≡ 0 (9)

This equation means that the assumed traction forces along the boundary should be in
equilibrium with the body forces as a premise. It seems that this fact has not been adequately
dealt with in the literature.

2.1 Constructing a Spectrally Admissible Matrix G

Equation (12) may be represented in matrix notation as

R t b 0T r+ = (10)

in which

R ≡ = ∫R u t dns is
r

in Γ
Γ

and  br
s is

r
ib u b d≡ = ∫ Ω

Ω
(11)

are a rectangular matrix with as many columns as the number of rigid body displacements uis
r

and a vector of equivalent nodal displacements obtained in terms of the (mixed) virtual work
done by the body forces on uis

r , respectively.
Consider a rectangular matrix Z, the columns of which are an orthogonal basis of the col-

umns of R, that is, such that Z Z IT =  and ( )( )Z Z Z Z Z ZT T T= . The idempotent matrix

Z Z T  is the orthogonal projector on the space of the inadmissible, unbalanced traction force
parameters t (Ben-Israel and Greville, 1980). For elasticity problems, the rigid body dis-
placement functions uis

r  may be defined in infinite ways. However, the resulting idempotent

matrix Z Z T  is unique. Then, it follows from the definition of Z that

R Z= λλ (12)

in which λ  is a non-singular square matrix readily obtained as

λ = Z RT (13)

If the traction force parameters t satisfy eq. (10), a condition for eq. (5) to be valid, it
follows from eqs. (12) and (13) that

Z t b 0T + =λ −Τ r (14)

Pre-multiplying equation above by Z and subtracting t from both sides yields the condi-
tion that t must satisfy to ensure the validity of eq. (5):

t (I Z Z )t Z bT= − − λλ −Τ r (15)

If this relationship is valid, then eq. (5) should be re-written as

Hd G(I Z Z ) t b G Z b Hd G t bT T= − + − = +−( )λ r
a aor (16)

in which G G(I Z Z )T
a ≡ −  is the admissible part of the matrix G , obtained through the



orthogonal projection given by ( )I Z Z− T , and )( r
a bZGbb T−−≡ λλ  is a vector of admis-

sible nodal displacements related to the body forces. The admissible matrix Ga , as defined
in eq. (16), is singular. It is worth establishing that

Rank( Ga ) = rank ( )I Z Z− T (17)

a feature that can only be inferred physically. In fact, the matrix G is a flexibility-type trans-
formation matrix, which must always yield some non-trivial equivalent nodal displacement
vector to any set of traction force parameters t, if one is dealing with an elastic body. Then,
owing to this physical property, G should be non-singular. However, depending on the set of
rigid body displacement functions uis

r  that appears in the definition of the fundamental solu-
tion, as given in eq. (1), G may become singular or ill conditioned. Regardless the condi-
tioning of matrix G, the rank of matrix Ga  is always well defined according to eq. (17),

since Ga  is by construction independent of the rigid body displacement functions uis
r . The

conventional boundary element formulation relies on the fact that the matrix G is non-
singular and hopefully not ill conditioned. All considerations of the present paper are based
on the effectively reliable premise expressed by eq. (17).

One might attempt to solve eq. (16) for the admissible traction parameters t :

t G Hd b= −−
a a
( ) ( )1 (18)

An apparent difficulty in obtaining eq. (18) lies in the fact that Ga  is singular. Fortu-
nately, equation system (16) corresponds mathematically to a problem proposed and solved
by Bott and Duffin in1953 (apud Ben-Israel and Greville, 1980). According to that, one
proposes following restricted inverse for Ga :

G (I Z Z )(G Z Z )a
T

a
T( )− −= − +1 1γ (19)

which is more adequate than the Bott-Duffin inverse, since it contains a symmetric, positive
definite, but otherwise arbitrary, matrix γ , which may be chosen in order to ensure that the

elements of Z Zγ T  and G a  have approximately the same magnitude, thus avoiding round-
off errors during the numerical computations. In elastostatics, for instance, the elements of
the matrix G are inversely proportional to the shear modulus, which does not affect the or-
thogonal basis Z. Since G a  and Z Zγ T  are complementary matrices ( )G Z Z 0a

Tλ ≡ ,

G Z Za
T+ γ  is always well conditioned (see eq. (17) and subsequent considerations).

Alternatively, one could think in obtaining the matrix C ≡ Csm , in eq. (4), in such a way
that, in absence of body forces, the nodal displacements equivalent to any set of inadmissible
traction force parameters, spanned by the basis Z, be equal to zero:

( )G C R Z 0T+ = (20)

Making use of eq. (12), one obtains the expression of the constants C:

C G Z= − λλ −Τ (21)

Substitution of C into eq. (4), according to its expression above, yields the same eq. (16).

2.2 A Spectrally Consistent Stiffness-Type Matrix

One may define a vector p  of nodal forces that are equivalent in terms of virtual work to



the traction force parameters t on the boundary

p Lt= ,  in which  L ≡ = ∫L u t dmn im in Γ
Γ

(22)

Then, it follows from eqs. (18) and (22) that

aaC bLGdKp )1(−−= ,  in which  HLGK )1(−≡ aC (23)

is a stiffness-type matrix obtained in the frame of the conventional boundary element
method. There is no reason to believe that this matrix should be symmetric, or at least less
non-symmetric, in general, than the stiffness-type matrix LG H−1 . The criticisms expressed
by Dumont (1987) are still valid in case of an admissible matrix G a . However, the matrix

CK , as given in eq.(23), has improved spectral properties that ensure the equilibrium of the

equivalent nodal forces p . This shall be demonstrated in the following.
Let the columns of a rectangular matrix W ≡ Wns  be a basis of the nodal displacements d

related to rigid body displacements. For the moment, one can only say that W and Z have
the same dimension. For a finite domain, it follows from eq. (5) that, necessarily,

H W 0= (24)

which is a feature related to the physical nature of the fundamental solution. On the other
hand, the rigid body displacement functions uis

r  may be described along the boundary Γ  as a
linear combination of the displacement interpolation functions uin  and Wns :

u u Wis
r

im mt ts= ω (25)

in which ω ≡ ωts  is a non-singular square matrix that transforms mtW  into the nodal dis-

placements related to uis
r . Then, it follows from eqs. (11), (22) and (25) that

R L WT= ωω (26)

and, according to eq. (12),

L W ZT = λλ ω−1 (27)

that is, the columns of L WT  lie in the space spanned by the rows of Z . Then

W L(I ZZ ) Z (I ZZ ) 0T T T T− = − ≡ω λ−Τ Τ (28)

Then, given the definitions of G a
( )−1  in eq. (19) and CK  in eq. (23), one obtains from the

orthogonality conditions expressed in eqs. (24) and (28) that 0WKKW == TT
CC . As a

consequence, the equivalent nodal forces p of eq. (23) are always self-equilibrated. Moreo-
ver, it may be demonstrated that ( )TWWIK −= rank)(rank C .

3. THE HYBRID DISPLACEMENT BOUNDARY ELEMENT METHOD

The hybrid displacement boundary element method was introduced by De Figueiredo
(1991), as an alternative to the hybrid stress boundary element method (Dumont, 1987a).

When the rigid body displacements of the fundamental solution are properly considered,
the variational principle that underlies the hybrid displacement boundary element method
becomes, in matrix notation,



( )[ ] [ ]
[ ] 0pRCdLpGt

LtpdGtbtRCbFpp
TTTT

TTT

=+−+
+−+++++−

∗∗

∗∗

δ
δδ r

(29)

in which all quantities have already been defined, with exception of the flexibility matrix

∫∫ Ω

∗∗

Γ

∗∗ Ω−Γ=≡ dudupF injijminimmn ,σF (30)

A vector ∗p  of singular force parameters is introduced in eq. (29). Note that the rigid

body displacements that affect the displacements ∗
inu , according to eq. (1), have no influence

in the expression of F , since the forces of a fundamental solution are self-equilibrated by
definition and perform zero work on rigid body displacements. This matrix is by definition
symmetric. Its integral expression involves the same kind of singularities of the integrals re-
quired in the evaluation of the matrices H and G, except for the elements about the main
diagonal, when indices m and n refer to the same nodal point (Dumont, 1987a). These ele-
ments can only be evaluated in the frame of a spectral property to be obtained presently.

For arbitrary variations ∗pδ  and dδ , the set of equations originated from the variational
principle may be expressed as

aa btGFp +=∗ (31)

Ltp = (32)
∗= pGdL TT

a (33)

in which ( )TT ZZIGCRGG −≡+≡a  and rr
a bGZbCbbb T−−≡+≡ λ  are defined ac-

cording to eqs. (16) and (21).
Making use of the knowledge gained in the first part of this paper, one solves the first

equation of the set above:

aaa bGFpGt )1()1( −∗− −= (34)

in which )1(−
aG  is given by eq. (19). Equation (34) means that

0tZT = (35)

and as a consequence, eq. (32) may be written as

( )tZZILp T−= (36)

from which follows that

( ) 0tZZILWpW TTT =−= (37)

according to eq. (28). This demonstrates the spectral consistency of eqs. (32) and (34).
The admissible matrix aG  is by construction orthogonal to Z, according to eq. (16). As

a consequence, there also exists an orthonormal basis Y such that

0YGT =a (38)

Then, the admissible set of singular forces ∗p , which may be transformed into displacements
in eq. (33), must necessarily be orthogonal to Y:

0pYT =∗ (39)

As a consequence, it the matrix F in eqs. (31) and (34) is singular, as proposed by Dumont



(1987a) and followed by De Figueiredo (1991), it also must be orthogonal to Y:

0FY = (40)

This is the criterion needed for the determination of the elements about the main diagonal of
the matrix F. An exhaustive investigation of the properties of matrices F and aG  deserves a

more extensive paper. One summarizes that, since eqs. (27) and (28) hold, ∗p  in eq. (33)
may be expressed as

( ) dLGp
T)1(−∗ = a (41)

Substituting for ∗p  in eq. (31) and considering eqs. (32) and (40), one arrives at a stiffness
relation between nodal displacements and equivalent nodal forces

( ) pbLGdK =+ −
aaD

)1( ,  in which  ( ) ( )T
LGFLGK )1()1( −−= aaD (42)

is a stiffness matrix. According to eq. (28), DK  is by construction orthogonal to rigid body
displacements, independently from the properties of the matrix F .

De Figueiredo introduced the hybrid displacement boundary element method with no
consideration of the rigid body displacements that are inherent to a fundamental solution.
Then, she had C = 0 in eq. (29) and the matrix G in place of aG  in eqs. (31) and (33).

Moreover, it was assumed that, instead of eq. (40),

0YF =~
(43)

where Y
~

 is the solution of eq. (33) for inadmissible displacements (with G in place of aG ):

WLYG TT =~
(44)

thus arriving, after evaluation of the diagonal elements of F, according to eq. (43), at

( ) pbLGdK =+ −1
D   with  ( ) ( )TLGFLGK 11 −−=D (45)

To assess the coherence of this formulation, consider eq. (38) written as

( ) 0YGZZI TT =− (46)

Then, it follows that

ZYGZZYG TTT ~≡= (47)

in which Z
~

 is a non-orthonormal basis of the same space spanned by Z. Now, observing

eqs. (44) and (47), and considering eq. (27), one concludes that Y
~

 in eqs. (43) and (44) is a
non-orthonormal basis of the space spanned by Y. As a consequence, eqs. (40) and (43) are
equivalent. Moreover, matrix DK , as indicated in both eqs. (42) and (45), is one and the
same matrix, provided that G may be inverted (is not ill conditioned).

The brief outline of this section is an important theoretical contribution to the hybrid
displacement boundary element method, since it assesses ant attests the spectral consistency
of the stiffness matrix DK , obtained by De Figueiredo (1991). However, the vector of nodal
forces equivalent to body forces should be expressed as in eq. (42), not as in eq. (45), for the
complete consistency of the formulation.



4. AN OUTLINE OF THE HYBRID STRESS BOUNDARY ELEMENT METHOD

The hybrid stress boundary element method is based on the Hellinger-Reissner potential.
It was first applied by Pian to finite elements. In 1987, Dumont generalized Pian’s ideas for
considering the stress field in the domain as a series of fundamental, singular solutions, thus
arriving at a boundary integral formulation. In matrix notation, the variational principle
writes

[ ] [ ] 0pHtpdHdbFpp TTT =−−+−+=Π− ∗∗∗ bb
R δδδ (48)

The flexibility matrix F and the cinematic transformation matrix H have already been
defined, although in a different context, in eqs. (30) and (6), respectively. The vector p is in
part a set of nodal forces equivalent to known surface forces it  along part σΓ  of the bound-

ary:

∫Γ Γ=≡
σ

dtup iimmp (49)

and in part a set of unknowns corresponding to reaction forces along the complementary
boundary segment uΓ . The vectors bb and bt  are nodal displacements and nodal forces,

respectively, equivalent to applied body forces:

∫∫ Ω
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injijm
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b
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b ,σb ,       ∫Γ Γ=≡ dut b
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b
ij

b
m

b ησt (50)

in which b
ijσ  is an arbitrary stress field in equilibrium with the applied body forces, such that

0, =+ ij
b
ij bσ  in Ω , and b

inu  are the corresponding displacements. Note that neither eq. (30)

nor eq. (50) is affected by the rigid body displacements inherent to ∗
inu  and b

inu , respectively,

since the stresses defined in a fundamental solution are by construction self equilibrated.
For arbitrary variations ∗pδ  and dδ , two sets of equations originate from eq. (48):

b

b

tppH

bHdFp
T −=

−=
∗

∗

(51)

For a finite domain, the matrix H is singular by construction, as formalized in eq. (24).
As a consequence, there is an orthogonal basis V such that

0VHT = (52)

Moreover, it may be verified that, in the second of eqs. (51),

( ) 0tpWT =− b (53)

Then, one must have, for physical consistency,

0pVT =∗ (54)

from which follows, in the first of eqs. (51), that necessarily

0FV = (55)

This equation is the key for the evaluation of the elements about the main diagonal of the
matrix F, which cannot be directly obtained by integration.

Considering the spectral properties given by eqs. (54) and (55), one may solve the first
of eqs. (51) for ∗p , in terms of generalized inverses (Ben-Israel and Greville, 1980) and in-



troduce its expression into the second of eqs. (51), thus arriving at the relation

( ) ( ) bb bVVFHtpHdVVFH TTTT 11 −−
++−=+ (56)

in which ( ) SKHVVFH TT ≡+
−1

 is a symmetric, positive semi-definite stiffness matrix.

Owing to the spectral property of H given by eq. (24), this stiffness matrix is by construction
orthogonal to rigid body displacements.

For the sake of brevity, one has to content oneself with this short description of the hy-
brid stress boundary element method. Interested readers are referred to some of the articles
written by the author in the last decade.

5. A COMPARATIVE SPECTRAL ANALYSIS OF THE METHODS OUTLINED

The three methods presented are schematized in Figs. 1, 2 and 3. One readily identifies
all types of transformations performed between the different coordinate systems, taking into
account the bases V, Y, W and Z of inadmissible parameters. All transformations are physi-
cally interpreted. Moreover, all primary nodal parameters are identified in brackets, accord-
ing to which one can represent the final results both in the domain and along the boundary.

For the sake of brevity, numerical results could not be considered in this article. All
three formulations perform equivalently, in terms of both accuracy and spectral properties,
provided that one considers the admissible matrix aG  of eq. (16) and proceeds as outlined.

Use of the inconsistent matrix G may lead to hazardous results, in case of ill conditioning.
All considerations in this paper were made for a finite, simply connected domain. For

either a multiply connected or an infinite domain, some new considerations have to be
added, in general, although the basic spectral properties remain valid.

The author hopes to have accomplished his task: demonstrate that in all boundary ele-
ment formulations one has to deal with singular matrices and generalized inverses. A not
unremarkable conclusion is that both the conventional and the hybrid displacement boundary
element methods need some conceptual improvements in their formulations, in order to be-
come completely consistent.
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Figure 1. Transformations carried out in the conventional boundary element method.

Figure 2. Transformations carried out in the hybrid displacement boundary element method.

Figure 3. Transformations carried out in the hybrid stress boundary element method.
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